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  Entangled States, Holography,  

and Quantum Surfaces 

   
                      George Chapline 
 
                 Lawrence Livermore National Laboratory 
          and 
          Los Alamos National Laboratory 
 

 Starting with an elementary discussion of quantum holography, 
we show that entangled quantum states of qubits provide a 
“local” representation of the global geometry and topology of 
quantum Riemann surfaces. This representation may play an 
important role in both mathematics and physics. Indeed, the 
simplest way to represent the fundamental objects in a “theory of 
everything” may be as muti-qubit entangled states. 

 

 

1. Introduction 

 It has recently been suggested [1] that the whole of mathematics may be 

unified with theoretical physics by virtue of the fact that there is a close connection 

between multi-channel quantum mechanics and the geometry of quantum surfaces. 

This connection first appeared in the theory of adaptive optics in the presence of 

photon noise [2], and subsequently has reappeared in various disguises: “quantum 

cohomology” [3], a quantum theory of membranes [4], and quantum holography 

[5]. This paper is intended as an elementary introduction to the relationship between 

these subjects and ordinary quantum mechanics. In particular, we would like to 

draw attention to the connection between quantum manipulations of entangled 

states of qubits and the introduction of deformable surfaces as quantum objects.  

  In section 2 we approach the problem of quantizing a curved two 

dimensional surface via its holographic representation. We begin section 2 by 

introducing a paraxial-ray type approximation for the holographic representation. 

The usual mode variables for the electromagnetic field are replaced by field 
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variables E and E+  whose transverse variation represents the structure of a 

hologram. These field variables depend on both the position on the hologram and 

the orientation of the illuminating laser beam, and quantum fluctuations of these 

variables reflect  quantum “fuzziness” in the surface. This may perhaps be 

interpreted by saying that the classical surface has been replaced with a “quantum 

surface” [6]. In section 3 we show that this quantum surface can also be described 

as a family of classical surfaces, and therefore corresponds to a certain kind of 

moduli space. A natural question that arises in this connection is how to 

characterize the moduli space associated with a non-classical hologram. In section 4 

this question is considered for the case where the surface in question is a complex 

curve; i.e. a Riemann surface   

 Just as is the case with classical holographic reconstructions of a reentrant 

surface, a central problem for quantum holography is how to represent the global 

topology of the surface.  However, in contrast with the classical situation, it appears 

that in the case of quantum holography there is, at least conceptually, a very elegant 

way of representing the global topology of the surface. Namely, the global 

topological structure of a quantum surface can be represented by forming a 

quantum superposition of quantum holographic representations corresponding to 

different views of the surface. In section 5 we comment on this remarkable 

possibility for the case of a Riemann surface. As it turns out entangled quantum 

holographic representations of a Riemann surface provide a pedestrian introduction 

to some very sophisticated mathematical structures. In addition such representations 

may be the long sought fundamental degrees of freedom in a theory of everything. 
 

2. Non-classical holographic representations 

 As a quick reminder all information concerning an arbitrarily curved surface 

in 3-dimensions can be encoded onto a flat plane or the surface of a sphere by 

recording photographically or otherwise the interference of monocromatic light 

scattered off the surface with a same color reference beam. Of course, if the surface 

is reentrant then the interference pattern must be recorded for various orientations 

of the illuminating beam in order to capture the entire surface. In order to physically 
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describe a hologram we must introduce a slowly varying “envelope” electric field 

whose rms. magnitude corresponds to the intensity of the interference pattern. To 

this end we write the vector potential on the recording surface as a function of 

position x on the hologram in the form 

 

               A(x) = -(i/k)  (x,t) exp i(kˆ E 1z-ω1t) +h.c.,                                       (1) 

where the factor exp i(k1z-ω1t) represents the rapidly varying phase of the reference 

and scattered  beams. It is straightforward to quantize these fields by substituting 

expression (1) into the standard radiation gauge lagrangian for the electromagnetic 

field. One finds the following commutation relations for the Cartesian component 

electric field operators on the recording surface: 

             [  (x,t) , ˆ E ˆ E +(x,t)] = Cδ(x-x’),                        (2) 

where C is a constant having units of photons per second. 

 In classical holography the electric field receives contributions from various 

points on the surface. In a similar way in quantum holography the electric field 

operator Es(x,t) associated with photons scattered from various points on a surface 

can be written in the from: 

   Es(x,t) = 
1
V rs

∑
  
i

ω
2ε0

 

 
 

 

 
 

1 / 2

ak eik ( x -  r) ,                                         (3) 

where ak is the photon creation operator for mode k. The quantum properties of a 

multi-mode electromagnetic fields have been discussed by many authors. We prefer 

the treatment of Ou, Hong, and Mandel [8]. They introduce two slowly varying 

Hermitian quadrature operators E1(x,t) and E2(x,t): 

 

                E1(x,t) =  (x,t) eˆ E -iβ + ˆ E +(x,t) eiβ 

     E2(x,t) = -i  (x,t) eˆ E -iβ  +i ˆ E +(x,t) e-β                                        

(4) 

 When the total the total electric field at x is the sum of a coherent field 

E0exp i(k1z-ω1t +ϕ) and a scattered field of the form (3), then it can be shown [6] 

that the current-current correlation in a photodetector is a linear function of sin2(β-
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ϕ) and cos2(β-ϕ). The linear  coefficients can be expressed in terms of correlation 

functions for the quadrature operators E1(x,t) and E2(x,t). As a corollary, when the 

photoelectric current J(t) can be expressed as a sum over pulses due to the arrival of 

photons at times tj , i.e. J(t) = ∑ k(t - t
j

j),  then the mean square current can be 

expressed in the form: 

                 < (∆J)2 > =  η | E1 |2 k2

0

∞

( ′ t )d∫ ′  + ηt 2 | E1 |2 q2 < (∆E1)2 >                      (5) 

where η is the quantum efficiency and q is the total charge resulting from one 

photon. The first term on the right hand side of (5) is just the usual shot noise, and 

is the only contribution to the noise when coherent light is being used to make the 

hologram. The second term on the right  hand side of (5) contributes when non-

classical quantum states of light are used to make the hologram. The most famous 

of these non-classical states are the “squeezed light states” for which the contours 

of the Wigner function for the quadrature operators for a single mode are ellipses 

[9]. If  < (∆E1)2 > in eq. (5) is negative, then the fluctuations in current density will 

be sub-Poissonian. Thus production of holograms with non-classical states of light 

is of interest from the point of view of mitigating the effects of photon counting 

statistics.   

 To the author’s knowledge the first proposal to construct spatial domain 

holograms with non-classical quantum states of light was that of Kolobov and 

Sokolov [10]. Their primary interest was in possibility of producing spatial images 

with sub-Poissonian levels of noise. What they actually calculated was the squeezed 

state analog of the classical hologram from a point scatterer.  In particular, for a 

frequency doubled laser beam incident on a point like non-linear converter they 

studied the interference of parametric down converted photons with the original 

coherent pump beam. The result of greatest interest is their calculation how 

fluctuations in photodetector current after homodyning with the coherent pump 

wave would depend on angle. In particular for the noise in the detector photocurrent 

after homodyning with the coherent pump wave they obtained the following result 

                          < J2 > =  < J > {1 - η[ cos2 ψ e2r + sin2 ψ e-2r -1]},                   (6) 
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where ψ = Reβ is the angle of rotation of the elliptical contours for the Wigner 

function, and exp(± r) = | e-iβ | ± | eiβ| .  

 Kolobov and Sokolov pointed out that by restricting the ranges of angles 

and/or phase mismatching it would be possible to emphasize either amplitude or 

phase squeezing. In the next section we will show that the use of non-classical 

states of light which are squeezed with respect to phase rather than amplitude is of 

particular interest in connection with understanding the relationship between multi-

channel quantum mechanics and classical holographic reconstructions of a surface.. 

 

3. Semi-classical reconstruction of a quantum surface 

 In principle, it would be straightforward to generalize the simple geometry 

considered by Kolobov and Sokolov so as to make a squeezed state holographic 

representation for a fixed curved surface as shown in Fig. 1. For example, one could 

imagine covering a smooth curved surface with a strong non-linear medium that 

produces parametrically down converted photons. If the surface were  irradiated 

with a single coherent pump beam, then the squeezed state photons produced at 

different points of the surface will interfere with the pump beam and produce an 

interference pattern on the detector plane that contains, in addition to the usual 

information about the shape of the surface, information about the squeezing 

parameter β. Actually it has been experimentally demonstrated [11] that the 

quantum state of squeezed light incident on a detector plane can be completely 

determined using homodyning techniques. As in ordinary holography the simplest 

kind of hologram to consider is one arising from the classical superposition of many 

elementary interference patterns - an elementary pattern in the quantum case being 

the spatial pattern of intensity fluctuations given in eq. (6). If the second term in eq. 

5 is small, then the surface reconstruction can proceed more or less as in classical 

holography. A perhaps more interesting problem of surface reconstruction arises 

when the second term in eq. 5 is important; especially in the case of strong phase 

squeezing. In this case the possibility arises of using the quantum theory of inverse 

scattering in its reincarnation as a theory of adaptive optics [2] to reconstruct a 

quantum surface.    
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 The basic idea is that, instead of a fixed classical surface, we consider a 

deformed surface Σ whose shape is chosen so as to just compensate for small shifts  

ϕ(σ,t) in the optical path length of a coherent light wave incident on a surface at 

position σ. We proceed by writing down equations which describe the interplay 

between small deformations in the shape of a surface and changes in the intensity of 

light on a set of holograms. The first equation supposes that we have a control 

system that adjusts the absolute position X(σ,t) of the surface with sufficient 

accuracy so that the intensity of light on the hologram at time t and position x is a 

linear function of the error e(σ,t) = ∆X(σ,t) + φ(σ,t) ; i.e. 

                        I(x,t)  = I0(x) +  d2σ
Σ∫  B(x,σ)e(σ,t),                                    (7)           

where I(x,t) is the recorded intensity of light on the hologram at time t and position 

x, and I0(x) is the recorded intensity on the hologram when the surface Σ is 

illuminated with a “standard” beam with no imposed variations in phase with 

respect to position or time. In writing equation (7) we are neglecting the light 

propagation time between the surface and the hologram. 

 The second equation relates the deformation of the surface at point σ, 

∆X(σ,t),  produced by the feedback control to the intensity of light on the hologram: 

                         ∆X(σ,t) = ∫dΩ  t’ A(σ,x,t’) I(x,t),                                  (8) d
−∞

t

∫

where the integral over dΩ  means sampling the light  intensity of the phase 

squeezed light at a sufficiently large number of points on the hologram as is 

required to determine the parameters τ1, τ2,... which define the shape of the surface. 

When photon counting noise is neglected; i.e. when we regard the hologram as a 

classical object, then equations (7) and (8) have the solution (in matrix shorthand) 

                      e = [1- AB]-1  φ.                                                         (9) 

Equation (9) shows that when the negative feedback is strong the error e(σ,t) can be 

reduced to a small fraction of the perturbation in path length. That is, the position of 

the surface just tracks locally the change in optical path length. Upon reflection one 

soon realizes that this just the classical principle of least action! What is perhaps 

most remarkable about this setup though is that the problem of changing the shape 



 7

of the surface to compensate for changes in the optical path of the illuminating 

beam becomes equivalent to solving the multi-channel Schrodinger equation when 

the effects of photon noise on the hologram are taken into account. This situation is 

qualitatively different from the classical case because the negative feedback in 

equation (9) will amplify the photon noise. Therefore unless the photon noise is 

suppressed, there is now a limit to how strong the negative feedback can be made.  

      It is not hard to show that in the presence of photon noise the two point 

correlation function for the path length errors e(σ,t) averaged over a time long 

compared to the characteristic time for photon number fluctuations has the form 

(again in operator notation): 

            < e1 e2> = [1-A1 B1]-1 [1- A2 B2]-1 {U12 + A1 A2 δ12 I0},                 (10) 

where U12  is the average  <ϕ1ϕ2 > over the same time and δ12 = δ(σ1 - σ2) δ (t1 - t2). 

In contrast with the classical case, an optimal choice for the feedback matrix A is 

somewhat arbitrary. However, following Dyson [2], we may take as the criterion 

for optimizing the feedback system that a quadratic function of the feedback errors 

should be minimized. Then it can be shown that the optimal feedback matrix 

A(σ,x,t’) can be expressed in the form: 

                 A = KBT I0
-1            

(11) 

where K(σ1 , σ2 , t1 - t2) is a causal matrix satisfying the non-linear operator equation 

 

                                 K + KT  + K(BT I0
-1B)KT  + U = 0                                       (12) 

This equation is a matrix generalization of the Gelfand - Levitan equation, and is 

essentially equivalent to the multi-channel inverse scattering theory of Newton and 

Jost [12]. In our quantum optical realization of their theory the discrete channel 

labels represent a set of spatially localized illuminations of the surface.  

 The similarity of the feedback control equations (11) and (12) to the inverse 

scattering equations for multi-channel quantum mechanics can be taken to mean 

that our scheme for using the photon counting correlations of a phase squeezed state 

hologram to control the shape of a surface provides a kind of quasi-classical 
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reconstruction for a quantum mechanical surface. In particular, the holographic 

equation (8) would allow one to correlate the position of the surface with an 

asymptotic phase. Of course, such a feedback system would not actually generate a 

quantum mechanical object in the sense that that at any given time the deformed 

surface has a well defined shape. However, by correlating the asymptotic phases 

derived from a sequence of shapes for the surface, one could over a period of time 

reconstruct what is in effect a semi-classical quantum mechanical  “wavefunction” 

for a deformed surface. 

 

4. Quantum Riemann surfaces 

 As a generalization of the familiar elementary problem of quantizing a flat 

two dimensional phase space parameterized by p and q, we now turn to the problem 

of quantizing the parameterizations of a smooth curved two dimensional surface Σ. 

When Σ is a complex algebraic curve, i.e. a Riemann surface, the surface can be 

represented by a collection of flat sheets connected together along branch cuts [13]. 

Thus in this case the problem of quantizing parameterizations of the surface would 

appear to be very similar to the original Wigner-Moyal problem of quantizing flat 

p,q phase space, except that now the phase space quantizations on each sheet must 

be matched along the branch cuts. One might guess that such a system could be 

quantized by introducing a set of p,q variables with an index j which represented 

which sheet one was on. The photon annihilation and creation operators E and E+ 

introduced in section 2 are now replaced with sets of annihilation and creation 

operators {aj =pj+ iqj} and {a+
j= pj- iqj}. The original Weyl-Heisenberg group will 

be replaced by a Lie group generated by operators of the form  α* a ≡ aα j
j

N
∗

=
∑

1
j
 

and α a+  ≡ aα j
j

N

=
∑

1

+
j.  States playing much the same role as the Glauber coherent 

states introduced in section 2 will be generated by the operators  

                        D(α) = exp (α a+ - α∗a).          (13) 
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which are analogous to the displacement operators D(ξ,η).These operators obey the 

multiplication rule 

                  D(α)D(β) = eiIm( αβ * )D(α+β).                        (14) 

Replacing the Weyl- Heisenberg algebra with an arbitrary Lie algebra leads to the 

generalized coherent states of Gilmore and Perelomov [14]. For these generalized 

coherent states the space parameterized by α  and α∗  is no longer the complex plane 

but a symmetric space G/H. These symmetric spaces have a natural symplectic 

structure, and moreover, provide a natural phase space structure for classical non-

linear dynamical systems whose dynamics is described by Lax-pair type equations 

[15]. For example, in the SU(N) case in terms of the variables  

    z = α
ααsi  

αα
nh *

*

the metric of the space parametrized by the α variables is proportional to dzdz*, and 

the Poisson bracket takes the simple form 

                         { , }f g i f
z

g
z

g
z

f
zj j j jj

= − −










∗ ∗∑ ∂

∂
∂
∂

∂
∂

∂
∂

.                                      (15)                     

 

Evidently the variables z and z* play essentially the same role as the p and q 

variables in ordinary mechanics. Therefore we expect that the Wigner-Moyal 

quantization procedure [16] can be used to define operators on the 2N-dimensional 

phase space parameterized by α  and α* and introduce a Wigner distribution 

function on this space. 

 It is interesting to note that when G/H is a Jacobian variety then the coherent 

states generated by the D(α) can be identified with the theta function that plays 

such an important role in the theory of Riemann surfaces and their moduli [7]. 

Indeed the condition that the generalized coherent states be single valued on the 

torus means that the phase factor Im(αβ*) in equation (14) must be equal to 2π 

times an integer when α and β correspond to periods of the torus. Remarkably this 

is just the condition that a complex N-torus also has an interpretation as the 

Jacobian variety of a Riemann surface [cf. 7]. Thus it is possible to regard the 
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Jacobian variety of a Riemann surface as a kind of classical phase space and to use 

theta functions to define a quantization of this phase space a la Wigner- Moyal. 

Since according to the classical Torelli theorem a Riemann surface can be 

reconstructed from its Jacobian variety and associated theta functions [7], one might 

assume that applying the Wigner-Moyal formalism to quantize the Jacobian variety 

of a fixed Riemann surface effectively solves the problem of defining a “quantized 

Riemann surface”. Alternatively, since in the case of a flat surface Wigner-Moyal 

quantization is equivalent to the usual Heisenberg-Born-Jordan quantization, what 

is involved here is presumably an assumption that introducing a deformed Riemann 

surface as a quantum object is equivalent to replacing a set of classical holographic 

representations of a Riemann surface with non-classical holograms. 

 The scattered electric field Es(x,t) receives contributions from various points 

on the surface. In the dipole approximation the contribution from each little patch 

of surface is determined by the cross product between the vector pointing from the 

patch of surface to the point x and the direction of the oscillating polarization 

induced in the surface patch by the illuminating beam. Since these two vectors are 

curl-free on the surface the sum of contributions over the surface has the character 

of an inner product of two harmonic differentials: 

                     (ω1 , ω2) = 
Σ∫  ω1∧ω2*                                              (16) 

Now an inner product for harmonic 1-forms of the form (16) plays an important 

role in the Torelli theorem reconstruction for a Riemann surface [cf. ref.7], so we 

here have evidence of a close connection between reconstructions of a Riemann 

surface from its period matrix and holographic representations of the Riemann 

surface.  

 In one obviously important respect, though, the quantization of the 

holographic electric field E(x,t) discussed in section 2 appears to differ from the 

symmetric space quantization that involves g-copies the Weyl-Heisenberg group; 

namely, the holographic representation seems to involve an infinite number of 

annihilation and creation operators corresponding to an infinite number of positions 

on the hologram, whereas the quantization based on the Jacobian variety involves 
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only a finite number of such operators. This discrepancy can be traced to the fact 

that the quantization problem most closely related to ordinary p,q phase space 

quantization assumes that the shape of the surface is determined by just a few 

parameters. Under such circumstances the electric field vectors at different points 

on the detector plane are not independent for a given orientation of the illuminating 

beam. Indeed upon reflection it is clear that in the case of a Riemann surface the 

only way to obtain algebraically independent annihilation and creation operators is 

to illuminate the different topological handles of the Riemann surface in distinctive 

ways. Indeed, it is physically clear that, at least in the short wavelength limit, two 

different patterns of illumination are needed in order to represent each handle. 

 An aesthetic choice for the independent illuminations needed for each 

handle would be to choose the different illuminating beams in such a way that the 

polarizations induced on the surface by the different beams can be identified with 

some canonical basis for the first cohomology group of the surface. Physically this 

corresponds to choosing a set of illuminations for the surface such that the 

polarizations of the oscillating electric currents induced on the surface by the 

illuminating beams can be identified with a set of independent 1-forms ωj. There 

are 2g independent real 1-forms in such a basis, whose support can be taken to 

coincide with the support of harmonic functions fj such that ωj = dfj [13]. On the 

other hand, since we are interested in smoothly deforming the surface in such a way 

that the deformed surface approximates a Riemann surface, it might be more useful 

to combine illuminations of the surface corresponding to real periods on the surface 

into holomorphic complex 1-forms. In fact, there are g independent holomorphic 1-

forms on a Riemann surface of genus g [13]. Therefore utilizing “holomorphic” 

illuminations corresponding to using holomorphic 1-forms in eq. (16), one could 

record a set of g independent holograms from which the Riemann surface could in 

principle be completely reconstructed.   

 Following the quantization program of section 2, one can associate 

independent photon annihilation and creation operators, ˆ E i and ˆ E I+, with each 

independent hologram, thus corroborating our previous guess for the structure of a 

phase space corresponding to a Riemann surface. Taking into account the quantum 
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fluctuations associated with these 2g degrees of freedom would lead to what might 

be legitimately interpreted as a quantized Riemann surface, where the classical 

coordinates of the Riemann surface have in some sense  been replaced with non-

commuting operators. This is the point of view that has been adopted for a quantum 

theory of membranes [4]. On the other hand, when restricted to a space where the 

photon number is zero or one, the Fock space annihilation and creation operators 

can be interpreted as spin operators. Thus in the low intensity limit one may 

describe quantized holographic representations of a Riemann surface in terms of a 

Hilbert space for g qubits.   

 As noted in section 2 one can use 2-photon counting correlations as 

measured on a planar array of photon detectors to back out the quantum amplitudes 

describing the non-classical states of light being generated on a surface by one or 

more phase coherent illuminating beams as shown in Fig. 1. This would allow one 

to assign a Fock space wavefunction to each independent illumination of the 

Riemann surface. In the low intensity limit these Fock space wavefunctions 

describe qubits, so that roughly speaking there would be a qubit associated with 

each handle on the surface. If a single laser beam is used to illuminate the whole 

surface then the quantum surface can be described by a direct product of the qubits 

associated with the topological handles. A perhaps more interesting situation would 

arise, though, if one could construct a quantum superposition of qubit states 

corresponding to different views of the Riemann surface. This would provide an 

elegant solution to the familiar practical problem of meshing together holographic 

views of a reentrant surface obtained from different perspectives, and at the same 

time shows that entangled quantum states can be used to characterize the global 

topology of certain moduli spaces. 

 

5. Entangled state representations for quantum surfaces 

 In the low intensity limit, the most general wavefunction for a quantum 

Riemann surface that could be constructed by superimposing quantum holograms of 

the type discussed in section 2 will have the form [5] 
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                                Ψ(x) = ∑ a( x, n
{n j}

1, n2,... nN ) 
i=1

g

∏ |nj>                       (17) 

where x is position on the detector plane and the nj =0,1 are the squeezed state 

photon numbers associated with canonical “holomorphic” illuminations of the 

surface. For fixed x, each term in (17) characterizes the shape of the template 

surface as viewed from a certain perspective and with a certain orientation of the 

illuminating beam. An interesting question is how to use all the terms in (17) to the 

reconstruct the global geometry of what is now a quantum Riemann surface. As a 

step in this direction one might hope to combine measurements of spatial and 

temporal photon counting correlations with a feedback scheme of the same nature 

as the adaptive optics scheme discussed in section (3) to relate changes in the 

wavefunction (17) to changes in the geometry of the quantum surface.   

 Unfortunately, there seem to be fundamental barriers to using a semi-

classical scheme like that described in section 3 to reconstruct the quantum surface 

associated with an entangled wavefunction. Even with the use of sophisticated 

measurements like those described in ref. 11, reconstruction of a quantum surface in 

a manner similar to that described in section 3 would require not only the classical 

recording of time domain photon counting correlations, but also numerical 

computations to determine the changes in the pump beam parameters. Thus despite 

the use of non-classical states of light, a new quantum state would have to 

generated using classical information. Moreover, using the holographic scheme 

illustrated in Fig. 1 it could only be generated 1 qubit at a time. As is well known 

[17] it is not possible (or at least not known how) to generate arbitrary states of a 

quantum mechanical system using classically controlled single qubit operations. In 

order to go beyond the limitations of classical data bases and single qubit 

operations, one must evidently employ multi-qubit purely quantum manipulations. 

 It might be noted that the non-classical holograms discussed in section 2 

make use of only one of the down converted pair of photons created from each 

limited area of the surface (cf. Fig. 1). However the second photon is entangled 

with the first photon and is a quantum resource that one can use. Indeed, by making 

use of the second entangled photon associated with each qubit one ought to be able 
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to make an exact replica of the original hologram using quantum teleportation [18]. 

The basic point is that the propagation of down converted photons from various 

points on the surface to a particular point on the detector plane creates a state that is 

a product of qubits, each of which is one of an EPR pair. The measurement 

techniques discussed in ref. 11 would allow one to measure the hologram qubits. 

Remarkably measuring one qubit in an EPR pair  is just the setting required for 

teleportation of single qubits. Thus one could use single qubit teleportation and 

transformation techniques to reconstruct any quantum surface described by a 

product of qubits.   

 Actually it has recently been pointed out [19] that one ought to be able to 

use multi-photon teleportation techniques to create an arbitrary entangled state of 

multiple qubits, provided 3-photon correlated states are available.. Such states are 

not yet readily available in the laboratory, but there is some evidence [20] they can 

be produced. Thus, production of a quantum superposition of squeezed state 

holograms corresponding to different views of the template surface and using multi-

photon entangled states may soon be not just a conceptual but also practical 

possibility.. The wavefunction for a multi-photon quantum hologram could in 

principle be measured using the same kind of multi-port homodyning techniques 

[21] that have already seen extensive use in quantum optics experiments. Therefore, 

we may readily conceive of a thought experiment in which the unused photons in 

the Kolobov and Sokolov scheme are used to generate a virtual multi-photon state 

representing the global geometry of a quantum surface.  

 Describing the geometry and topology of the virtual quantum surface 

associated with the wavefunction (17) is an intriguing mathematical problem. 

Because of quantum fluctuations in the classical amplitude and phase, each term in 

(17) will correspond to a family of deformations of a Riemann surfaces. The 

superposition of the various terms in (17) apparently describes a ensemble of such 

foliations, all of the same topological type. It is worth noting in this connection that 

the feedback equations (7) and (8) imply that an entangled quantum hologram 

defines a flat U(2g) bundle over the Riemann surface and this bundle is equivalent 

to an ensemble of families of deformations of the Riemann surface. As it happens 
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both the algebra for combining representations of flat U(N) connections over a 

Riemann surface and topological invariants for families of deformations of 

Riemann surfaces played an important role in the development of quantum 

cohomology [3]. Thus it is quite possible that our elementary derivation of a 

connection between entangled states of qubits and the global geometry and 

topology of families of deformations of Riemann surfaces is connected with and 

perhaps even underlies these sophisticated mathematical developments.    

 Another interesting question concerns the relationship of our entangled 

qubit representation for a quantum surfaces with fundamental physics. Our qubit 

representation for a quantum Riemann surface might be considered to be a simple 

model for M-theory [4]. On the other hand, ensembles of families of Riemann 

surfaces play an important role in both curved twistor spaces and Kummer surfaces, 

which may play an important role in the Planck scale structure of space-time [22]. 

This suggests that one should consider the possibility that the fundamental degrees 

of freedom in physics can be described in terms of multi-qubit entangled states. For 

example, a Kummer surface presumably corresponds to a special 24 qubit state, 

which could then be paired via entanglement with another 24 qubit state 

representing the dual Kummer surface. Thus the fundamental objects in a theory of 

everything may simply multi-qubit generalizations of the familiar 2-qubit EPR 

pairs. 

 

 

6. Summary 
  
 We have considered the ways in which both unentangled and entangled non-

classical states of light might be used to holographically represent the quantum 

fluctuations of a deformable surface. These constructions have concrete realizations 

based on 1) the use of coherent pump waves to produce non-classical EPR photon 

states on the surface, 2) the use of homodyning techniques for measuring quantum 

wavefunctions, and 3) the use of quantum teleportation techniques to entangle 

quantum holographic states. In the case of a deformable Riemann surface with 
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genus >1, these constructions apparently provide a means to connect topologically 

non-trivial 4-manifolds with entangled qubit wavefunctions. This connection sheds 

new light on the relationship between mathematics and physics, and may play an 

important role in fundamental physics. 
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Figure 1 

 

 
 

Figure caption 

 Production of squeezed state photons by parametric down conversion on a 

smoothly curved surface coated with a non-linear material.   

 

 


